30 research outputs found

    The impact of functional imaging on radiation medicine

    Get PDF
    Radiation medicine has previously utilized planning methods based primarily on anatomic and volumetric imaging technologies such as CT (Computerized Tomography), ultrasound, and MRI (Magnetic Resonance Imaging). In recent years, it has become apparent that a new dimension of non-invasive imaging studies may hold great promise for expanding the utility and effectiveness of the treatment planning process. Functional imaging such as PET (Positron Emission Tomography) studies and other nuclear medicine based assays are beginning to occupy a larger place in the oncology imaging world. Unlike the previously mentioned anatomic imaging methodologies, functional imaging allows differentiation between metabolically dead and dying cells and those which are actively metabolizing. The ability of functional imaging to reproducibly select viable and active cell populations in a non-invasive manner is now undergoing validation for many types of tumor cells. Many histologic subtypes appear amenable to this approach, with impressive sensitivity and selectivity reported

    Future of radiation therapy for malignant melanoma in an era of newer, more effective biological agents

    Get PDF
    The incidence of melanoma is rising. The primary initial treatment for melanoma continues to be wide local excision of the primary tumor and affected lymph nodes. Exceptions to wide local excision include cases where surgical excision may be cosmetically disfiguring or associated with increased morbidity and mortality. The role of definitive or adjuvant radiotherapy has largely been relegated to palliative measures because melanoma has been viewed as a prototypical radiotherapy-resistant cancer. However, the emerging clinical and radiobiological data summarized here suggests that many types of effective radiation therapy, such as radiosurgery for melanoma brain metastases, plaque brachytherapy for uveal melanoma, intensity modulated radiotherapy for melanoma of the head and neck, and adjuvant radiotherapy for selected high-risk, node-positive patients can improve outcomes. Similarly, although certain chemotherapeutic agents and biologics have shown limited responses, long-term control for unresectable tumors or disseminated metastatic disease has been rather disappointing. Recently, several powerful new biologics and treatment combinations have yielded new hope for this patient group. The recent identification of several clinically linked melanoma gene mutations involved in mitogen-activated protein kinase (MAPK) pathway such as BRAF, NRAS, and cKIT has breathed new life into the drive to develop more effective therapies. Some of these new therapeutic approaches relate to DNA damage repair inhibitors, cellular immune system activation, and pharmacological cell cycle checkpoint manipulation. Others relate to the investigation of more effective targeting and dosing schedules for underutilized therapeutics, such as radiotherapy. This paper summarizes some of these new findings and attempts to give some context to the renaissance in melanoma therapeutics and the potential role for multimodality regimens, which include certain types of radiotherapy as aids to locoregional control in sensitive tissues

    Update on the rational use of tositumomab and iodine-131 tositumomab radioimmunotherapy for the treatment of non-Hodgkin’s lymphoma

    No full text
    Michael J Burdick, Roger M MacklisDepartment of Radiation Oncology, Taussig Cancer Center and Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USAAbstract: Targeted radioimmunotherapy in non-Hodgkin’s B-cell lymphoma (NHL) offers an efficacious therapy and minimal toxicity compared to conventional chemotherapy. Iodine 131 tositumomab (131I-TST) is a murine monoclonal antibody against the CD20 cell surface protein and is directly covalently conjugated to 131I, a radioactive β and γ emitter. While initially approved for use in relapsed, refractory, or transformed low grade B-cell NHL, investigational uses with promising results include autologous stem cell transplant, intermediate grade NHL, and the frontline management of indolent NHL. This review summarizes the 131I-TST literature on mechanism of action, treatment indications, treatment delivery, efficacy, investigational uses, and future prospects.Keywords: tositumomab, radioimmunotherapy, non-Hodgkin’s lymphoma, Bexxa

    Breast Cancer Radiotherapy: Safe for All?

    No full text

    Surface levels of CD20 determine anti-CD20 antibodies mediated cell death in vitro.

    No full text
    The sensitivity of human Burkitt's lymphoma cells to rituximab (Rtx) and tositumomab (Tst) was assessed on cells expressing different levels of CD20 on surface. Cells that harbor low CD20 levels may resists against therapeutics response to CD20-specific antibodies. We postulated that, radiation-induced modulation of CD20 surface levels may play a crucial and central role in determining the relative efficacy of rituximab and tositumomab in treating Burkitt's lymphoma disease. Here, we examined the Ξ³-radiation-induced CD20 expression in the Burkitt lymphoma cell line 'Daudi' and the relation of differential levels of CD20 with anti-CD20 mAbs mediated cell death.In this study we examined kinetics of CD20 expression following sub lethal doses ofΞ³-radiation to Daudi cells and thereafter anti-CD20 mAbs (rituximab and tositumomab) were added in cell suspensions. The correlation of kinetics of CD20 expression and cells treated with anti-CD20 mAbs/or corresponding isotype Abs with special reference to changes in mitochondrial membrane potential and reactive oxygen species generation was also examined. Further, we also investigated the efficacy of anti-CD20 mAbs and possible induction of cell death in relation to levels of CD20 cell surface expression.This report provides evidence that CD20 expression can be induced by exposure of cells to Ξ³-radiation. In addition, these findings demonstrated that the efficacy of anti-CD20 mAbs is dependent on the surface levels of CD20. Based on these findings, we hypothesized (i) irradiation just prior to immunotherapy may provide new treatment options even in aggressive B cell tumors, which are resistant to current therapies in vivo (ii) The efficacy of induction of apoptosis varies with type of monoclonal antibodies in vitro

    Overview of Accountable Care Organizations for Oncology Specialists

    No full text
    corecore